
Container
Runtime Security
Comparative Insights
2025 Edition

Authored By:

Rahul Jadhav
SIG Security Chair, Nephio
CTO, Cofounder, AccuKnox

®

Technical Paper

Evaluating Detection, Response, and Prevention
Capabilities Across Falco, KubeArmor, Tetragon,
NeuVector, and More

Table of Contents

Introduction...3

Characteristics of a Runtime Security Solution..4

Detection Capabilities..4

Response Capabilities...5

TOCTOU issues...6

Overwhelming the events causing the events to drop...7

Advantages of Detect and Response Model...7

Disadvantages of Detect and Response Model..7

Prevention Capabilities..8

eBPF and its role in preventive capabilities.. 8

Prevention Capabilities and Zero Trust.. 9

Sandboxing Capabilities...9

Sandboxing techniques.. 10

Performance Impact... 10

Ease of Deployment on Hardened Distributions..11

Ease of Runtime Policy Enforcement... 11

Policies Adhering to Zero Trust Principles... 11

Runtime Security with Detect and Response..12

Issue 1: Killing a process is not an effective remediation strategy..12

Issue 2: The Response depends on the successful execution of a chain of actions 13

Falco Analysis.. 13

Policy Enforcement... 14

Tetragon Analysis.. 14

Policy Enforcement Mechanics... 15

NeuVector Analysis... 15

1

Policy Enforcement Mechanics... 16

Palo Alto Prisma/TwistLock Analysis..16

Policy Enforcement Mechanics... 18

gVisor Analysis..19

Policy Enforcement Mechanics... 19

KubeArmor Analysis.. 20

Policy Enforcement Mechanics..20

Case Studies...21

File Integrity Monitoring/Protection using different tools.. 21

FIM using Falco... 21

FIM using Tetragon...21

FIM using KubeArmor.. 21

Summary.. 22

2

This guide offers a technical analysis of container runtime security tools, comparing
their detection, response, and prevention capabilities. It covers key architectures,

TOCTOU issues, and zero-trust principles while examining tools like Falco,
NeuVector, and KubeArmor. Ideal for security practitioners looking to secure

containerized environments effectively.

Introduction
This technical guide aims to compare/contrast the fundamental architectures of the
different container runtime security tooling such as Falco, KubeArmor, Tetragon,
Tracee, and NeuVector, and understand the primitives used under the hood. Please
note that the technical guide focuses only on container runtime security.

At a broader level, the tools can be categorized into:

1. Detection only
2. Detect and Respond
3. Preventive engines with Inline enforcement. Most inline enforcement tooling

also has an observability mode that allows one to trace/log the system events.

Tool Type Remarks

Falco

Detect and Respond Falco is a detection engine. Sysdig recently
open-sourced Falco-Talon that provides a response
engine on top of Falco. There is no inline mitigation
capability.

Tetragon

Detection +
Enforcement

Tetragon provides a detection engine based on
eBPF. Tetragon also provides enforcement
capabilities using:

● bpf_send_signal() to kill the process.
● It also uses bpf_override_return() to handle

inline mitigation. However, override return is
mostly turned off in production env and is
not reliable or advised to be used.

3

https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco-talon
https://github.com/cilium/tetragon/
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/aquasecurity/tracee

Tracee

Detection only Open-source Tracee provides detection only.

KubeArmor

Detection + Inline
Mitigation

KubeArmor provides a detection engine based on
eBPF. KubeArmor uses LSMs (LSM-BPF and
AppArmor) for inline mitigation.

NeuVector

Detect and Respond The only engine that does not leverage eBPF. It
uses inotify/fanotify. It provides the ability to kill the
process from userspace.

Palo Alto
TwistLock
(not open

source)

Detection + Inline
Enforcement

TwistLock Defender replaces the original runc with
a runc shim binary to achieve runtime blocking
rules enforcement. This results in several issues
operating on hardened distributions such as
Bottlerocket, GKE COS, etc.

Disclaimer: The author is one of the maintainers of KubeArmor and the cofounder of
AccuKnox. The aim is to dig deeper into the speciûc primitives used by different
runtime security engines for enforcement. The guide is deeply technical and most of
the research needed for this technical guide was done by me. If you disagree with
any of the statements, please contact me at rahul@accuknox.com.

Characteristics of a Runtime Security Solution

Detection Capabilities
Most of the Runtime solutions depend on eBPF to get runtime visibility across
process executions, ûle system accesses, and network accesses. The most obvious
eBPF hooks to target are kprobes, kretprobes, and tracepoints which are fairly easy
to use. There are a few systems-related challenges, for example, getting an absolute
path of the ûle object. Some solutions depend on the use of LSM hooks to get the full

4

https://kubearmor.io/
https://github.com/neuvector/neuvector
https://github.com/neuvector/neuvector/blob/main/share/fsmon/inotify_linux.go
https://github.com/neuvector/neuvector/blob/main/share/fsmon/fanotify_linux.go
https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/get-started
https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/get-started
https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/deploy-defender/defender-architecture
https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/deploy-defender/defender-architecture
https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/system-requirements
https://www.accuknox.com/
mailto:rahul@accuknox.com
https://docs.kernel.org/trace/kprobes.html
https://www.aquasec.com/blog/linux-vulnerabilitie-tracee/

path and these mechanisms are pretty well-understood now. The other obvious
challenge is that all the expected eBPF hook points or capabilities might not be
equally applicable across all Linux distributions and across all platforms (x86, ARM,
etc).
One more challenge when it comes to detection is the ability to ship all the events.
Some operations might cause a burst of system activities and in a lot of cases, it
might not be possible to ship all of these raw events to the analysis engine in the
cloud. It is relatively simple to overwhelm the event loop that operates on kernel
perf/ring circular buffer such that events are lost. It is very common to ûnd solutions
(ref2) implementing ways to tell users that eBPF events are lost in the circular
perf/ring buffer. However, there is no way to prevent the events themselves from
getting lost (ref: Pitfall #5: Event Overload). An attach point can be easily
overwhelmed with events because eBPF lacks concurrency primitives and an eBPF
probe cannot block the event producer. The kernel will simply stop calling the
kprobes if it ûnds that it is overwhelmed.
Another issue with kprobes is that it can be easily disarmed if the attacker is allowed
to execute its code even for a brief period.

Response Capabilities
The events from the detection engine are sent to a policy decision process most
likely implemented in the userspace that determines the action/response to be
taken. Responses involve,

1. killing a target process
2. quarantining a node/pod
3. deleting a pod/node

In security parlance, this model is called post-attack mitigation response since the
attacker is allowed to execute their code in the target environment and then a
response is taken. In most cases, the response will take several milliseconds to several

5

https://blog.itaysk.com/2020/04/20/ebpf-lost-events
https://falco.org/docs/troubleshooting/dropping/
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://grsecurity.net/tetragone_a_lesson_in_security_fundamentals#how-to-bypass-tetragon-

minutes to get executed and thus might prove too late to take any effective action.
For example, consider a ransomware attacker who is moving/deleting sensitive
assets. Typically such an action could be completed in a few milliseconds and a
response sent after that might prove ineffective in protecting those assets.

TOCTOU issues
Time-of-check to time-of-use (TOCTOU) is a condition that occurs when a system's
behavior is dependent on the timing between checking a condition and using the
result. TOCTOU vulnerabilities can be exploited by attackers to gain unauthorized
access to resources, modify data, or elevate privileges.

6

When handling certain system events such as connect(), open(), openat(), creat(), etc,
the security engine retrieves some of the arguments by reading userspace buffers
upon syscall exit. An attacker running a malicious program on a monitored system
could use a variety of techniques to deterministically increase the duration of the
syscall execution and modify the arguments in its own address space after the syscall
has been invoked and before its execution is complete. The security engine will
assume that the modiûed data is the input argument of the syscall which may lead
to rule bypass.
Every detect and response security engine suffers from this problem including
Falco-Talon, Tracee, and NeuVector. Tetragon uses bpf_send_signal() to send a kill
signal in kernel space itself. However, this also is a case of post-attack mitigation
since the attacker is allowed to execute its code even though just for a brief period. A
technical guide explaining the pitfalls of this approach is mentioned here. Quoting
verbatim:
<In attempting to mitigate container escapes, Tetragon tries using advanced Linux
kernel features like eBPF and kprobes not to protect the very same kernel from
getting exploited, but instead to stop an already successful exploit from using its
gains.=

Overwhelming the events causing the events to drop
Detect and Response systems expect that the system events be successfully
transmitted to the decision engine in userspace to handle responses. However,
under high load conditions, it might not be feasible to transmit all the events to the
userspace because of eBPF perf/ring buffer limitations. The kernel provides a circular
ring buffer to propagate events from kernel space to userspace and under heavy
load the events might get overwritten/lost. There is no way to know the criticality of
events and thus the system might lose critical events. This may result in no response.
Attackers might overwhelm the system events queue so that their malicious events
never make it to userspace and thus no response is sent.

Advantages of Detect and Response Model
1. Multi-Vector Detection: A detection system can consider multiple aspects of

detection from different engines and then respond. For example, L7 API
telemetry shows the use of the previously unused log4j endpoint and within
the same time interval, a process invocation from the /tmp/ folder can be
considered a critical security event. The response could be to quarantine the
corresponding pod.

2. Multi-Dimensional Response: A malicious system process invocation
detected by a runtime security engine can trigger a response that deactivates
external network access by changing the AWS VPC Security Group and killing
the malicious process.

7

https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/Rex%20Guo%20Junyuan%20Zeng%20-%20Phantom%20Attack%20-%20%20Evading%20System%20Call%20Monitoring.pdf
https://grsecurity.net/tetragone_a_lesson_in_security_fundamentals

Disadvantages of Detect and Response Model
1. Post Attack Mitigation: The response is sent once the attacker’s code is

executed in the target environment. An Attacker can stop the events from
getting triggered by either changing the security knobs or by overwhelming
the event loop and thus a response will never be initiated.

2. Unable to protect certain actions: Consider a k8s pod that has mounted a
volume mount containing sensitive assets. An attacker would delete the said
sensitive asset and the response would not be able to prevent it since by the
time the response is handled, the operation would have been completed.

3. Bigger impact on services: The response might result in a service outage
depending on the response action. For example, quarantining the node/pod
might result in a service outage depending on how the application executing
on the corresponding node/pod handles resource unavailability.

Prevention Capabilities
Prevention or Inline enforcement requires that the system action such as process
exec, ûle access, or network access is vetted/rejected before the action is executed.
Linux primitives such as seccomp, and LSMs (Linux Security Modules such as
AppArmor, SELinux, etc) provide a systematic way of such a vetting process and deny
the execution or access of the resource.
There are user-space techniques (such as LD-PRELOAD) that can also achieve
prevention capabilities, however, there are security issues surrounding userspace
techniques and they can be easily circumvented even by a script kiddie attacker.

eBPF and its role in preventive capabilities
It is usually assumed that eBPF provides enforcement capabilities as well. However,
this is not true in all cases. The enforcement capabilities of eBPF depend on the
leveraged hook points. For example, in the case of network packet handling, one can
leverage trafûc control (TC) hook points or XDP (express data path) hook points
where one can redirect/drop a packet and thus handle network packet enforcement
rules.
However, the same is not true for kprobes, kretprobes, and tracepoints. These hook
points are primarily for observability and one cannot use them to change the system
call behavior without major implications.

Note that bpf_override_return() is often quoted as a bpf-helper primitive available for
enforcing controls at the kprobes hook point. This helper works by setting the PC
(program counter) to an override function which is run in place of the original probed
function. This means the probed function is not run at all. The replacement function
just returns with the required value.

8

Tetragon quotes this as the primitive it uses. However, bpf_override_return() should
not be used for security controls as per the bpf-helper man page itself since it has
<security implications=. bpf_override_return() is typically used for error injection and is
dependent on another kernel conûguration called
CONFIG_FUNCTION_ERROR_INJECTION. Moreover, the system call needs to be
explicitly listed as error-injectable on the target distribution for it to work. Given all
this, using bpf_override_return() is not worth pursuing in the production
environments. Based on my understanding, less than 20% of production systems
have this enabled (most of these distributions are used on desktops, the distributions
used in k8s and server deployments do not keep these enabled).

Prevention Capabilities and Zero Trust
Zero Trust expects that policies can be speciûed in the least permissive mode. For
example, the user should be able to specify what is allowed execution, and
everything else should be denied (or audited).
A detect-and-response system cannot truly provide a Zero-Trust system because it
does not have preventive capabilities.

Sandboxing Capabilities
Sandboxing applications during their runtime execution is a practice often followed
to ensure that unbounded access is not provided to untrusted applications.
Unbounded access in terms of ûle system access, process invocation, network
communications, and the use of advanced capabilities. For example, assume there is
a Nginx web server running in a k8s deployment. Typically the nginx is the only
process that would be executed within that pod and needs access to sensitive assets
such as conûguration ûles (/etc/nginx). Only nginx and all its worker/child nginx
processes can perform network communication. A sandboxing rule would ensure
that.

● Only nginx process is allowed to be spawned within that pod
● Only the nginx process is allowed access to sensitive ûle system paths such as

/etc/nginx containing critical conûguration ûles.
● Only nginx process is allowed to do network communication
● No processes are allowed to use advanced capabilities such as

CAP_SYSADMIN, …
Sandboxing allows the deployments to be put in the least permissive mode, making
it resilient to zero-day attacks, and remote command injections/executions. Other
use cases for sandboxing might require constraining unrestrained access to process
executions. For example, LLM frameworks (such as vllm) utilize external plugins (use
of trust_remote_code üag with vllm) to achieve certain objectives. The ability to trust

9

https://tetragon.io/docs/concepts/enforcement/#override-return-value
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/iovisor/bcc/issues/2485#issuecomment-1179965134
https://github.com/iovisor/bcc/issues/2485#issuecomment-1179965134
https://github.com/nyrahul/linux-kernel-configs#bpf_override_return-support
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://github.com/vllm-project/vllm
https://discuss.huggingface.co/t/how-to-avoid-trust-remote-code-true-for-my-models/84134

arbitrary code is a huge security concern and thus sandboxing of such framework
would be highly desirable.

Sandboxing techniques
Sandboxing cannot be achieved using a detect and response model since in that
model, the untrusted code is allowed execution, and a response action is taken later.
Sandboxing requires inline mitigation i.e., if an untrustworthy access/execution is
attempted it has to be stopped/blocked/denied inline.
Gating all the action: Sandboxing requires that all the system actions are gated i.e.,
pass through certain checks, and if the checks fail the action is denied.
Google gVisor and KubeArmor provide sandboxing capabilities.

Performance Impact
Every runtime security engine emits system events telemetry/logs. This can critically
impact the user application running on the same cluster or nodes. Thus, it is
important to ensure that the runtime performance of the security engine is kept
under control.
An architectural issue with detect and response systems is that they have to emit all
the systems events to the policy decision process in the cloud/node and thus cause
heavy performance impact. Every kernel event shipped to userspace impacts the
performance since a context switch is required to ship the event between the kernel
to user space boundary and post that there are userspace functions that will further
induce performance overhead.

10

https://gvisor.dev/
https://kubearmor.io

In contrast, a runtime security system that supports proûling and whitelisting of the
known system behavior and ensuring that the preventive security is handled in the
kernel itself can reduce the overhead signiûcantly. Only unknown or non-whitelisted
events will be sent to the cloud, thus reducing the performance overhead
signiûcantly.

Another approach to alleviating the performance impact is to do in-kernel
aggregation of events before sending it to the userspace reducing kernel context
switches. Any aggregation has an impact on the ûdelity of the data samples and thus
should be carefully done. AccuKnox has an IPR (patent) in the context of handling
optimal in-kernel aggregation of such events.

Ease of Deployment on Hardened Distributions
Enforcing blocking rules requires special primitives to be used. Such primitives might
require certain changes at the host or the container runtime interface layer. For
example, Palo Alto TwistLock allows block-based policies by overriding the system
default container runc binary with their runc-shim binary. Most hardened
distributions (Talos Linux, Bottlerocket, GKE-COOS, etc) won’t allow this.
Runtime Security engines that allow inline/preventive mitigations should be
deployable using standard K8s constructs (helm, kubectl apply, k8s operator)
without changing anything at the host/node level.

Ease of Runtime Policy Enforcement
Representing policies as native Kubernetes resources allows one to enable/disable
rules at will and manage the lifecycle just as any other k8s resource. It is important
that when a rule is enabled/disabled it should not require the containers/pods to be
restarted.

Policies Adhering to Zero Trust Principles
The user should be allowed to specify a policy allowing speciûc action and deny/audit
everything else.

11

https://www.accuknox.com/wp-content/uploads/KernelObservabilityInstrumentationLeveragingeBPF.pdf

Runtime Security with Detect and Response

The primary model with such systems is that all the system events are shipped to a
userspace PDP (Policy Decision Process) or event handler. The user-speciûed
policies/rules are matched and optionally a response is sent that can:

a. Kill the target process
b. Quarantine the target pod/node
c. Delete the target pod/node
d. Change the CSP VPC Security group setting

Issue 1: Killing a process is not an effective remediation
strategy
Handling a remedial action takes from a few seconds to a few minutes. The
fundamental notion of a detect and respond system is to analyze execution events
and then kill the malicious process. However, once the malicious code is allowed to
execute in the target environment, then the attacker most likely would turn off the
security knobs or overwhelm the event engine such that it reaches the event
threshold and starts dropping events. Consider another scenario, where a
ransomware attacker is moving or deleting the sensitive ûles. This typically takes time
in a few milliseconds. A detect and response model will never be able to thwart such
attacks since by the time the response action is taken the damage is already done.

12

Issue 2: The Response depends on the successful
execution of a chain of actions
The Chain of action:
Event Detection in kernel

→ Send the event to userspace
→ Send the event to Policy Decision Process (PDP), in Cloud/Node

→ PDP sends a response action
→ The response needs to be shipped to the target node

The attacker can impede or prevent a response from being sent by compromising
multiple aspects of this chain.

Falco Analysis
Falco is a CNCF graduated runtime security tool designed to detect and alert on
abnormal behavior and potential security threats in real-time. Falco is a detection
engine, and Falco-Talon provides response mechanisms on top of Falco and other
events. Falco provides üexible ways to specify rules based on which the system
events are ûltered.

13

https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco-talon

Policy Enforcement
Falco does not provide any preventive or inline policy enforcement. For example, one
can add rules to detect if particular processes have been executed but cannot add
rules to deny the execution of those processes. Falco-Talon provides an asynchronous
response engine that operates on top of Falco and qualiûes as a detect-and-response
system.

Tetragon Analysis
Tetragon provides real-time, eBPF-based Security Observability and Runtime
Enforcement. One of the primary differences as compared to Falco when it comes to
ûltering the system events is that most of the ûltering happens in kernel and thus
saves costly kernel to userspace context switches.
Tetragon can hook into any function in the Linux kernel and ûlter on its arguments,
return value, and associated metadata that Tetragon collects about processes (e.g.,
executable names), ûles, and other properties. By writing tracing policies users can
solve various security and observability use cases.

14

https://github.com/cilium/tetragon/

Policy Enforcement Mechanics
Unlike Falco, Tetragon provides a policy enforcement mechanism as well where users
can specify enforcement policy actions such as:

● Send Signal: Signal action (such as Sigkill) sends a speciûed signal to the
current process.

● Override: Override action allows to modify the return value of the call. While
Sigkill will terminate the entire process responsible for making the call,
Override will run in place of the original kprobed function and return the value
speciûed in the argError ûeld.

While Tetragon allows local in-kernel policy enforcement, its policy enforcement
mechanics suffer from certain problems.

● Send Signal: Tetragon leverages bpf_send_signal() bpf-helper function to send
a kill signal to the current process. While the signal is sent from the kernel
space itself, it still qualiûes as a post-attack mitigation primitive since the
malicious process would still be allowed to execute. This article from Grsecurity
explains the risks associated with post-attack mitigation in general and
tetragon in particular.

● Override return: Tetragon leverages bpf_override_return() bpf-helper function
to return arbitrary user-speciûed value to the calling system call. Typically this
policy action won’t work on most production systems because

○ It depends on multiple kernel conûgurations that are typically not
enabled on production systems.

○ There is also a dependency on the target system call to be tagged
under ALLOW_ERROR_INJECTION list for the helper function to work.

○ bpf_override_return() function man page mentions that the bpf-helper
has security implications, and thus is subject to restrictions.

NeuVector Analysis
Neuvector provides process, ûle, and network-based container security rules to be
speciûed. Neuvector also allows local remediation action to be taken. For example,
users can specify deny actions for speciûc processes.

Policy Enforcement Mechanics
Please note that there is no online documentation that explains the internal
architecture of Neuvector container runtime security. However, the code was open
source after its acquisition by SUSE, and the following text is based on the analysis of
the code repo itself.

15

https://tetragon.io/docs/concepts/tracing-policy/selectors/#signal-action
https://tetragon.io/docs/concepts/tracing-policy/selectors/#override-action
https://docs.ebpf.io/linux/helper-function/bpf_send_signal/
https://grsecurity.net/tetragone_a_lesson_in_security_fundamentals
https://docs.ebpf.io/linux/helper-function/bpf_override_return/
https://github.com/neuvector/neuvector
https://github.com/neuvector/neuvector
https://github.com/neuvector/neuvector

I created the above diagram by understanding the code üow to explain the internal
architecture of how policy enforcement works. Based on the above diagram:

● Neuvector mounts the host procfs within the container itself and monitors it
using fsmon/inotify.

● Any execution of a new process event can now be tracked since it would result
in a new folder created in the procfs with the corresponding PID.

● Neuvector enforcer then sends the kill signal to the corresponding PID if the
process is blacklisted.

Thus, Neuvector also deploys post-attack mitigation techniques (such as killing the
process) from an enforcement perspective.
Notably, Neuvector does not employ eBPF-based techniques for detection purposes
and thus the overall performance impact would be signiûcantly high since it would
be difûcult for any userspace-based techniques to scale for such runtime security
needs.

Palo Alto Prisma/TwistLock Analysis
Prisma Cloud provides container runtime security as one of the features and uses its
defender architecture to fulûll this feature. Notably, Prisma Defender also does not
use eBPF-based architecture. Instead, it relies on container runtime-based
integration.

16

https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/deploy-defender/defender-architecture

Prisma Defender is responsible for enforcing vulnerability and compliance blocking
rules. When a blocking rule is created, Defender moves the original runC binary to a
new path and inserts a Prisma Cloud runC shim binary in its place.

17

https://docs.prismacloud.io/en/enterprise-edition/content-collections/runtime-security/install/deploy-defender/defender-architecture#blocking-rules

Policy Enforcement Mechanics
Prisma replaces the system runC with its runC binary to apply block-based rules. The
Prisma runC thus becomes the topmost-parent process for all the container-based
execution and thus can control the execution. When enforcing block-based
enforcement rules, there are multiple issues:

1. Difûcult to operate on a hardened distribution such as Bottlerocket, Talos, COS,
etc, since it won't allow insertion of runC shim. Thus manual host-speciûc
changes have to be made.

2. Applying block-based rules would require node restarts.
3. The performance impact would be signiûcantly higher since all the decisions

are handled in the userspace.

gVisor Analysis
gVisor provides a strong layer of isolation between running applications and the host
operating system. It is an application kernel that implements a Linux-like interface.

18

gVisor includes an Open Container Initiative (OCI) runtime called runsc that enables
it to work with existing container tooling. The runsc runtime integrates with Docker
and Kubernetes, making it simple to run sandboxed containers.

gVisor intercepts application system calls and acts as the guest kernel, without the
need for translation through virtualized hardware. gVisor may be thought of as either
a merged guest kernel and VMM, or as seccomp on steroids. This architecture allows
it to provide a üexible resource footprint (i.e. one based on threads and memory
mappings, not ûxed guest physical resources) while also lowering the ûxed costs of
virtualization. However, this comes at the price of reduced application compatibility
and higher per-system call overhead.

Policy Enforcement Mechanics
Compared to any other security engine, gVisor takes a very different approach. It
introduces an intermediate system call layer through which all the calls are made
and the policy logic is implemented at this intermediate layer. gVisor provides a
clean sandboxing environment and extremely powerful and üexible policy
enforcement options as compared to any other policy engine. However, the other
issues are:

● Intrusive deployment process: Replacing runC is difûcult, especially on
hardened distributions such as Bottlerocket, Talos, COS, etc.

● Performance impact: Since every call has to be directed through the sentry
wall introduced by gVisor

19

KubeArmor Analysis
KubeArmor is a cloud-native runtime security enforcement system that restricts the
behavior (such as process execution, ûle access, and networking operations) of pods,
containers, and nodes (VMs) at the system level.
KubeArmor leverages Linux security modules (LSMs) such as AppArmor, SELinux, or
BPF-LSM to enforce the user-speciûed policies. KubeArmor generates rich
alerts/telemetry events with container/pod/namespace identities by leveraging eBPF.

Policy Enforcement Mechanics
KubeArmor leverages eBPF for detection and audit rules. For block-based rules, it
leverages (in the order of priority):

● LSM-BPF
● AppArmor
● SELinux (only for host-based rules).

KubeArmor is the ûrst engine to leverage LSM-BPF to enforce block-based rules
consistently for process, ûle, and network. LSM-BPF provides an extremely üexible
way for converting user-speciûed rules (managed by k8s native resources) into eBPF
bytecode that is then injected at LSM hooks. LSM hooks ensure that the enforcement
does not suffer from post-attack mitigation, TOCTOU, or Semantic poisoning issues.
Since all the decision-making, including enforcement happens in kernel space, the
impact on the performance is limited.
KubeArmor cannot be operated on environments that do not support LSM-BPF or
AppArmor. However, there are no distributions where either of them is not enabled.

20

https://www.accuknox.com/blog/runtime-security-ebpf-bpf-lsm

Case Studies

File Integrity Monitoring/Protection using different tools

FIM using Falco
Falco provides open-source File Integrity Monitoring rules based on eBPF. However,
it does not support enforcement of block rules. For example, there is no way to deny
changes in system folders using these rules. Using Talon, however, one can add
response actions in post-attack mitigation (detect and response) style if there are
changes detected in the system folders.

FIM using Tetragon
Tetragon provides both File Integrity Monitoring and enforcement/protection. In
enforcement/protection, it sends a kill signal to any process trying to make changes
to the system folders. However, we didn’t ûnd any rule to prevent deletion/unlinking
of assets from the same system folders. Hence, we added a security rule using
kprobe security_path_unlink to ensure that the unlinks are prevented. However,
Tetragon could not prevent the deletion/unlink of the assets because of post-attack
mitigation issues i.e., the target process was killed after the assets were deleted. The
detailed note with the changes as well as behaviour is captured here.

FIM using KubeArmor
KubeArmor leverages LSMs (LSM-BPF) to prevent changes to sensitive folders. The
sample policy can be found here. KubeArmor does not suffer from TOCTOU issues or
any post-attack mitigation issues.

21

https://artifacthub.io/packages/falco/security-hub/file-integrity-monitoring
https://github.com/cilium/tetragon/blob/main/examples/quickstart/file_monitoring_enforce.yaml
https://github.com/nyrahul/RuntimeSecurity/tree/main/tetragon-file-monitoring-enforce
https://github.com/kubearmor/KubeArmor/blob/main/getting-started/use-cases/hardening.md#fim-file-integrity-monitoringprotection

Summary
There are three categories of Runtime Security Engines:

1. Engines that provide detection capabilities and handle threat analysis in the
cloud/control plane providing remediation/response capabilities. (Falco-Talon +
Sysdig, Tracee, ORCA, Wiz, …)

2. Engines that provide detection capabilities and provide localized response
capabilities (NeuVector, Tetragon)

3. Engines that provide detection capabilities, response capabilities from the
cloud/control plane, and provide inline mitigation capabilities (KubeArmor,
security-proûle-operator).

Engine \
Feature

Falco
+
Talon

Tracee Tetragon KubeArmo
r

NeuVecto
r

gVisor Prisma
(Enterprise
only)

Detect &
Response

Yes No(ent) No No(ent) No(ent) No Yes

Preventive
Capabilities

No No Limited Yes No Yes Yes

Hardened
distros
support

Yes Yes Limited Yes Yes No Limited

Performanc
e Impact

High High Low Low High High High

Zero Trust
Policy

No No Yes Yes Yes Yes Yes

Sandboxing No No No Yes No Yes Yes

Deployment
complexity

Low Low Low Low Low High(requ
ires runC
change)

High
(requires runC
change)

Implementa
tion
Language

C++ go go go go go Not-Known

(ent): Available in Enterprise version
Performance Impact is high for every Detect and Response engine that does not do
local/in-kernel aggregation.

Containerized environments are becoming the backbone of modern application
deployment, bringing agility and security challenges. This guide aims to provide a
comparison of the top runtime container security tools, highlighting their
capabilities, key architectural tenets, and trade-offs of those architectural tenets. By

22

https://github.com/kubernetes-sigs/security-profiles-operator

aligning the right tools with your security strategy and operational needs, you can
strengthen your containerized workloads against evolving threats. Effective runtime
security is a journey of continuous improvement, not a one-time solution.

If you have any feedback or suggestions, feel free to share them with Rahul at
rahul@accuknox.com.

23

mailto:rahul@accuknox.com

Featured by

About AccuKnox
AccuKnox delivers agentless zero trust security for public and
private cloud platforms to secure modern and traditional
workloads.

linkedin.com/accuknox

@AccuKnox

Scan for Demo

®

https://twitter.com/AccuKnox
https://www.linkedin.com/company/accuknox/

	Table of Contents
	
	Introduction
	Characteristics of a Runtime Security Solution
	Detection Capabilities
	Response Capabilities
	TOCTOU issues
	Overwhelming the events causing the events to drop
	Advantages of Detect and Response Model
	Disadvantages of Detect and Response Model

	Prevention Capabilities
	eBPF and its role in preventive capabilities
	Prevention Capabilities and Zero Trust

	Sandboxing Capabilities
	Sandboxing techniques

	Performance Impact
	Ease of Deployment on Hardened Distributions
	Ease of Runtime Policy Enforcement
	Policies Adhering to Zero Trust Principles

	Runtime Security with Detect and Response
	Issue 1: Killing a process is not an effective remediation strategy
	Issue 2: The Response depends on the successful execution of a chain of actions

	Falco Analysis
	Policy Enforcement

	Tetragon Analysis
	Policy Enforcement Mechanics

	NeuVector Analysis
	Policy Enforcement Mechanics

	Palo Alto Prisma/TwistLock Analysis
	Policy Enforcement Mechanics

	gVisor Analysis
	Policy Enforcement Mechanics

	KubeArmor Analysis
	Policy Enforcement Mechanics

	Case Studies
	File Integrity Monitoring/Protection using different tools
	FIM using Falco
	FIM using Tetragon
	FIM using KubeArmor

	
	Summary

